Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 4143, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38374421

ABSTRACT

Climate warming at the end of the last glacial period had profound effects on the distribution of cold-adapted species. As their range shifted towards northern latitudes, they were able to colonise previously glaciated areas, including remote Arctic islands. However, there is still uncertainty about the routes and timing of colonisation. At the end of the last ice age, reindeer/caribou (Rangifer tarandus) expanded to the Holarctic region and colonised the archipelagos of Svalbard and Franz Josef Land. Earlier studies have proposed two possible colonisation routes, either from the Eurasian mainland or from Canada via Greenland. Here, we used 174 ancient, historical and modern mitogenomes to reconstruct the phylogeny of reindeer across its whole range and to infer the colonisation route of the Arctic islands. Our data shows a close affinity among Svalbard, Franz Josef Land and Novaya Zemlya reindeer. We also found tentative evidence for positive selection in the mitochondrial gene ND4, which is possibly associated with increased heat production. Our results thus support a colonisation of the Eurasian Arctic archipelagos from the Eurasian mainland and provide some insights into the evolutionary history and adaptation of the species to its High Arctic habitat.


Subject(s)
Genome, Mitochondrial , Reindeer , Animals , Reindeer/genetics , Genome, Mitochondrial/genetics , Arctic Regions , Biological Evolution , Phylogeny
2.
Mol Ecol ; 33(5): e17274, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38279681

ABSTRACT

Overharvest can severely reduce the abundance and distribution of a species and thereby impact its genetic diversity and threaten its future viability. Overharvest remains an ongoing issue for Arctic mammals, which due to climate change now also confront one of the fastest changing environments on Earth. The high-arctic Svalbard reindeer (Rangifer tarandus platyrhynchus), endemic to Svalbard, experienced a harvest-induced demographic bottleneck that occurred during the 17-20th centuries. Here, we investigate changes in genetic diversity, population structure, and gene-specific differentiation during and after this overharvesting event. Using whole-genome shotgun sequencing, we generated the first ancient and historical nuclear (n = 11) and mitochondrial (n = 18) genomes from Svalbard reindeer (up to 4000 BP) and integrated these data with a large collection of modern genome sequences (n = 90) to infer temporal changes. We show that hunting resulted in major genetic changes and restructuring in reindeer populations. Near-extirpation followed by pronounced genetic drift has altered the allele frequencies of important genes contributing to diverse biological functions. Median heterozygosity was reduced by 26%, while the mitochondrial genetic diversity was reduced only to a limited extent, likely due to already low pre-harvest diversity and a complex post-harvest recolonization process. Such genomic erosion and genetic isolation of populations due to past anthropogenic disturbance will likely play a major role in metapopulation dynamics (i.e., extirpation, recolonization) under further climate change. Our results from a high-arctic case study therefore emphasize the need to understand the long-term interplay of past, current, and future stressors in wildlife conservation.


Subject(s)
Reindeer , Animals , Reindeer/genetics , Animals, Wild , Gene Frequency , Genetic Drift , Svalbard
3.
mSystems ; 9(2): e0104323, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38294254

ABSTRACT

Animals and their associated microbiota share long evolutionary histories. However, it is not always clear how host genotype and microbiota interact to affect phenotype. We applied a hologenomic approach to explore how host-microbiota interactions shape lifetime growth and parasite infection in farmed Atlantic salmon (Salmo salar). Multi-omics data sets were generated from the guts of 460 salmon, 82% of which were naturally infected with an intestinal cestode. A single Mycoplasma bacterial strain, MAG01, dominated the gut metagenome of large, non-parasitized fish, consistent with previous studies showing high levels of Mycoplasma in the gut microbiota of healthy salmon. While small and/or parasitized salmon also had high abundance of MAG01, we observed increased alpha diversity in these individuals, driven by increased frequency of low-abundance Vibrionaceae and other Mycoplasma species that carried known virulence genes. Colonization by one of these cestode-associated Mycoplasma strains was associated with host individual genomic variation in long non-coding RNAs. Integrating the multi-omic data sets revealed coordinated changes in the salmon gut mRNA transcriptome and metabolome that correlated with shifts in the microbiota of smaller, parasitized fish. Our results suggest that the gut microbiota of small and/or parasitized fish is in a state of dysbiosis that partly depends on the host genotype, highlighting the value of using a hologenomic approach to incorporate the microbiota into the study of host-parasite dynamics.IMPORTANCEStudying host-microbiota interactions through the perspective of the hologenome is gaining interest across all life sciences. Intestinal parasite infections are a huge burden on human and animal health; however, there are few studies investigating the role of the hologenome during parasite infections. We address this gap in the largest multi-omics fish microbiota study to date using natural cestode infection of farmed Atlantic salmon. We find a clear association between cestode infection, salmon lifetime growth, and perturbation of the salmon gut microbiota. Furthermore, we provide the first evidence that the genetic background of the host may partly determine how the gut microbiota changes during parasite-associated dysbiosis. Our study therefore highlights the value of a hologenomic approach for gaining a more in-depth understanding of parasitism.


Subject(s)
Cestode Infections , Gastrointestinal Microbiome , Parasitic Diseases , Salmo salar , Humans , Animals , Gastrointestinal Microbiome/genetics , Aquaculture , Dysbiosis/veterinary
4.
Mol Biol Evol ; 39(12)2022 12 05.
Article in English | MEDLINE | ID: mdl-36472532

ABSTRACT

Host-associated microbiomes are essential for a multitude of biological processes. Placed at the contact zone between external and internal environments, the little-studied oral microbiome has important roles in host physiology and health. Here, we investigate the roles of host evolutionary relationships and ecology in shaping the oral microbiome in three closely related gorilla subspecies (mountain, Grauer's, and western lowland gorillas) using shotgun metagenomics of 46 museum-preserved dental calculus samples. We find that the oral microbiomes of mountain gorillas are functionally and taxonomically distinct from the other two subspecies, despite close evolutionary relationships and geographic proximity with Grauer's gorillas. Grauer's gorillas show intermediate bacterial taxonomic and functional, and dietary profiles. Altitudinal differences in gorilla subspecies ranges appear to explain these patterns, suggesting a close connection between dental calculus microbiomes and the environment, likely mediated through diet. This is further supported by the presence of gorilla subspecies-specific phyllosphere/rhizosphere taxa in the oral microbiome. Mountain gorillas show a high abundance of nitrate-reducing oral taxa, which may promote adaptation to a high-altitude lifestyle by modulating blood pressure. Our results suggest that ecology, rather than evolutionary relationships and geographic distribution, shape the oral microbiome in these closely related species.


Subject(s)
Hominidae , Microbiota , Animals , Gorilla gorilla , Phylogeny , Dental Calculus , Microbiota/genetics
5.
Sci Adv ; 8(34): eabo5115, 2022 08 26.
Article in English | MEDLINE | ID: mdl-36001672

ABSTRACT

Invasive species are a key driver of the global biodiversity crisis, but the drivers of invasiveness, including the role of pathogens, remain debated. We investigated the genomic basis of invasiveness in Ambrosia artemisiifolia (common ragweed), introduced to Europe in the late 19th century, by resequencing 655 ragweed genomes, including 308 herbarium specimens collected up to 190 years ago. In invasive European populations, we found selection signatures in defense genes and lower prevalence of disease-inducing plant pathogens. Together with temporal changes in population structure associated with introgression from closely related Ambrosia species, escape from specific microbial enemies likely favored the plant's remarkable success as an invasive species.


Subject(s)
Ambrosia , Introduced Species , Ambrosia/genetics , Europe , Genomics , Sequence Analysis, DNA
6.
Mol Ecol ; 31(16): 4208-4223, 2022 08.
Article in English | MEDLINE | ID: mdl-35748392

ABSTRACT

We live in a world characterized by biodiversity loss and global environmental change. The extinction of large carnivores can have ramifying effects on ecosystems like an uncontrolled increase in wild herbivores, which in turn can have knock-on impacts on vegetation regeneration and communities. Cheetahs (Acinonyx jubatus) serve important ecosystem functions as apex predators; yet, they are quickly heading towards an uncertain future. Threatened by habitat loss, human-wildlife conflict and illegal trafficking, there are only approximately 7100 individuals remaining in nature. We present the most comprehensive genome-wide analysis of cheetah phylogeography and conservation genomics to date, assembling samples from nearly the entire current and past species' range. We show that their phylogeography is more complex than previously thought, and that East African cheetahs (A. j. raineyi) are genetically distinct from Southern African individuals (A. j. jubatus), warranting their recognition as a distinct subspecies. We found strong genetic differentiation between all classically recognized subspecies, thus refuting earlier findings that cheetahs show only little differentiation. The strongest differentiation was observed between the Asiatic and all the African subspecies. We detected high inbreeding in the Critically Endangered Iranian (A. j. venaticus) and North-western (A. j. hecki) subspecies, and show that overall cheetahs, along with snow leopards, have the lowest genome-wide heterozygosity of all the big cats. This further emphasizes the cheetah's perilous conservation status. Our results provide novel and important information on cheetah phylogeography that can support evidence-based conservation policy decisions to help protect this species. This is especially relevant in light of ongoing and proposed translocations across subspecies boundaries, and the increasing threats of illegal trafficking.


Subject(s)
Acinonyx , Acinonyx/genetics , Animals , Ecosystem , Genome , Genomics , Humans , Iran
7.
mBio ; 13(3): e0067922, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35502903

ABSTRACT

The concept of a holobiont, a host organism and its associated microbial communities, encapsulates the vital role the microbiome plays in the normal functioning of its host. Parasitic infections can disrupt this relationship, leading to dysbiosis. However, it is increasingly recognized that multicellular parasites are themselves holobionts. Intestinal parasites share space with the host gut microbiome, creating a system of nested microbiomes within the primary host. However, how the parasite, as a holobiont, interacts with the host holobiont remains unclear, as do the consequences of these interactions for host health. Here, we used 16S amplicon and shotgun metagenomics sequencing to characterize the microbiome of the intestinal cestode Eubothrium and its effect on the gut microbiome of its primary host, Atlantic salmon. Our results indicate that cestode infection is associated with salmon gut dysbiosis by acting as a selective force benefiting putative pathogens and potentially introducing novel bacterial species to the host. Our results suggest that parasitic cestodes may themselves be holobionts nested within the microbial community of their holobiont host, emphasizing the importance of also considering microbes associated with parasites when studying intestinal parasitic infections. IMPORTANCE The importance of the parasite microbiome is gaining recognition. Of particular concern is understanding how these parasite microbiomes influence host-parasite interactions and parasite interactions with the vertebrate host microbiome as part of a system of nested holobionts. However, there are still relatively few studies focusing on the microbiome of parasitic helminths in general and almost none on cestodes in particular, despite the significant burden of disease caused by these parasites globally. Our study provides insights into a system of significance to the aquaculture industry, cestode infections of Atlantic salmon and, more broadly, expands our general understanding of parasite-microbiome-host interactions and introduces a new element, the microbiome of the parasite itself, which may play a critical role in modulating the host microbiome, and, therefore, the host response, to parasite infection.


Subject(s)
Cestoda , Gastrointestinal Microbiome , Microbiota , Parasites , Animals , Bacteria/genetics , Cestoda/genetics , Dysbiosis , Gastrointestinal Microbiome/physiology
8.
ISME Commun ; 2(1): 9, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-37938691

ABSTRACT

The symbiont-associated (SA) environmental package is a new extension to the minimum information about any (x) sequence (MIxS) standards, established by the Parasite Microbiome Project (PMP) consortium, in collaboration with the Genomics Standard Consortium. The SA was built upon the host-associated MIxS standard, but reflects the nestedness of symbiont-associated microbiota within and across host-symbiont-microbe interactions. This package is designed to facilitate the collection and reporting of a broad range of metadata information that apply to symbionts such as life history traits, association with one or multiple host organisms, or the nature of host-symbiont interactions along the mutualism-parasitism continuum. To better reflect the inherent nestedness of all biological systems, we present a novel feature that allows users to co-localize samples, to nest a package within another package, and to identify replicates. Adoption of the MIxS-SA and of the new terms will facilitate reports of complex sampling design from a myriad of environments.

9.
Curr Biol ; 31(20): 4650-4658.e6, 2021 10 25.
Article in English | MEDLINE | ID: mdl-34437844

ABSTRACT

Following the advent of industrial-scale antibiotic production in the 1940s,1 antimicrobial resistance (AMR) has been on the rise and now poses a major global health threat in terms of mortality, morbidity, and economic burden.2,3 Because AMR can be exchanged between humans, livestock, and wildlife, wild animals can be used as indicators of human-associated AMR contamination of the environment.4 However, AMR is a normal function of natural environments and is present in host-associated microbiomes, which makes it challenging to distinguish between anthropogenic and natural sources.4,5 One way to overcome this difficulty is to use historical samples that span the period from before the mass production of antibiotics to today. We used shotgun metagenomic sequencing of dental calculus, the calcified form of the oral microbial biofilm, to determine the abundance and repertoire of AMR genes in the oral microbiome of Swedish brown bears collected over the last 180 years. Our temporal metagenomics approach allowed us to establish a baseline of natural AMR in the pre-antibiotics era and to quantify a significant increase in total AMR load and diversity of AMR genes that is consistent with patterns of national human antibiotic use. We also demonstrated a significant decrease in total AMR load in bears in the last two decades, which coincides with Swedish strategies to mitigate AMR. Our study suggests that public health policies can be effective in limiting human-associated AMR contamination of the environment and wildlife.


Subject(s)
Microbiota , Ursidae , Animals , Animals, Wild , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Humans , Microbiota/genetics , Sweden
10.
Mol Biol Evol ; 37(10): 3003-3022, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32467975

ABSTRACT

Dental calculus, the calcified form of the mammalian oral microbial plaque biofilm, is a rich source of oral microbiome, host, and dietary biomolecules and is well preserved in museum and archaeological specimens. Despite its wide presence in mammals, to date, dental calculus has primarily been used to study primate microbiome evolution. We establish dental calculus as a valuable tool for the study of nonhuman host microbiome evolution, by using shotgun metagenomics to characterize the taxonomic and functional composition of the oral microbiome in species as diverse as gorillas, bears, and reindeer. We detect oral pathogens in individuals with evidence of oral disease, assemble near-complete bacterial genomes from historical specimens, characterize antibiotic resistance genes, reconstruct components of the host diet, and recover host genetic profiles. Our work demonstrates that metagenomic analyses of dental calculus can be performed on a diverse range of mammalian species, which will allow the study of oral microbiome and pathogen evolution from a comparative perspective. As dental calculus is readily preserved through time, it can also facilitate the quantification of the impact of anthropogenic changes on wildlife and the environment.


Subject(s)
Dental Calculus/microbiology , Mammals/microbiology , Microbiota , Mouth/microbiology , Animals , Biological Evolution , Diet , Drug Resistance, Microbial/genetics , Gorilla gorilla , Metagenome , Reindeer , Ursidae
11.
Pediatr Pulmonol ; 55(5): 1237-1245, 2020 05.
Article in English | MEDLINE | ID: mdl-32176838

ABSTRACT

Respiratory syncytial virus (RSV) is an important cause of early life acute respiratory infections. Potentially pathogenic respiratory bacteria, including Streptococcus pneumoniae, Moraxella catarrhalis, and Haemophilus influenzae are frequently detected during RSV infections and associated with increased illness severity. However, the temporal dynamics of bacterial colonization associated with RSV infection remain unclear. We used weekly nasal swab data from a prospective longitudinal birth cohort in Brisbane, Australia, to investigate bacterial colonization patterns within children aged less than 2 years in the 4-week period before and after an RSV infection. During 54 RSV infection episodes recorded in 47 children, both S. pneumoniae and M. catarrhalis were detected frequently (in 33 [61.1%] and 26 [48.1%] RSV infections, respectively). In most cases, S. pneumoniae and M. catarrhalis colonization preceded the viral infection, with the nasal load of each increasing during RSV infection. Generally, the dominant serotype of S. pneumoniae remained consistent in the 1 to 2 weeks immediately before and after RSV infection. Little evidence was found to indicate that prior colonization with either bacteria predisposed participants to developing RSV infection during the annual seasonal epidemic. Possible coacquisition events, where the bacteria species was first detected with RSV and not in the preceding 4 weeks, were observed in approximately 20% of RSV/S. pneumoniae and RSV/M. catarrhalis codetections. Taken together our results indicate that RSV generally triggered an outgrowth, rather than a new acquisition, of S. pneumoniae and M. catarrhalis from the resident microbial community.


Subject(s)
Haemophilus influenzae/isolation & purification , Moraxella catarrhalis/isolation & purification , Respiratory Syncytial Virus Infections/microbiology , Respiratory Tract Infections/microbiology , Streptococcus pneumoniae/isolation & purification , Australia , Female , Humans , Infant , Male , Prospective Studies , Respiratory Syncytial Virus, Human
12.
Microbiology (Reading) ; 166(1): 63-72, 2020 01.
Article in English | MEDLINE | ID: mdl-31714201

ABSTRACT

Respiratory syncytial virus (RSV) and Streptococcus pneumoniae are frequently co-associated during acute respiratory infections, particularly amongst infants and young children. In this study, we aimed to identify strains of RSV and serotypes/sequence types of S. pneumoniae associated with co-infections within a cohort of paediatric patients, and to assess RSV-mediated adhesion of pneumococcal isolates. The RSV glycoprotein sequence was determined for 58 RSV-positive samples and molecular serotyping and MLST was used to analyse 26 pneumococcal isolates. We also compared 23 pneumococcal isolates for their adherence to RSV-infected or mock-infected airway epithelia cells using immunofluorescence microscopy and automated particle counting. The tight association between RSV and S. pneumoniae was also visualized using scanning electron microscopy. This study did not identify any statistically significant trend in the strains of RSV and S. pneumoniae associated with co-infections. Furthermore, almost all isolates (22 of 23) showed significantly increased adherence to RSV-infected cells. The level of adherence did not appear to correlate with pneumococcal strain or sequence type, and isolates obtained from RSV-infected patients displayed a similar level of adherence as those from RSV-negative patients. The absence of particular S. pneumoniae or RSV strains associated with co-infection, together with the near ubiquitous presence of RSV-mediated adhesion throughout the pneumococcal clinical isolates, may indicate that the mechanisms governing the association with RSV are of sufficient importance to be maintained across much of the species.


Subject(s)
Bacterial Adhesion/physiology , Coinfection/microbiology , Phylogeny , Respiratory Syncytial Viruses/isolation & purification , Respiratory Tract Infections/microbiology , Streptococcus pneumoniae/isolation & purification , A549 Cells , Bacterial Proteins/genetics , Child, Preschool , Coinfection/virology , Epithelial Cells , Genetic Variation , Humans , Infant , Infant, Newborn , Respiratory Syncytial Viruses/classification , Respiratory Syncytial Viruses/genetics , Respiratory Syncytial Viruses/physiology , Respiratory Tract Infections/virology , Streptococcus pneumoniae/classification , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/physiology , Viral Fusion Proteins/genetics
13.
Mol Ecol ; 28(2): 484-502, 2019 01.
Article in English | MEDLINE | ID: mdl-30187987

ABSTRACT

Recent exploration into the interactions and relationship between hosts and their microbiota has revealed a connection between many aspects of the host's biology, health and associated micro-organisms. Whereas amplicon sequencing has traditionally been used to characterize the microbiome, the increasing number of published population genomics data sets offers an underexploited opportunity to study microbial profiles from the host shotgun sequencing data. Here, we use sequence data originally generated from killer whale Orcinus orca skin biopsies for population genomics, to characterize the skin microbiome and investigate how host social and geographical factors influence the microbial community composition. Having identified 845 microbial taxa from 2.4 million reads that did not map to the killer whale reference genome, we found that both ecotypic and geographical factors influence community composition of killer whale skin microbiomes. Furthermore, we uncovered key taxa that drive the microbiome community composition and showed that they are embedded in unique networks, one of which is tentatively linked to diatom presence and poor skin condition. Community composition differed between Antarctic killer whales with and without diatom coverage, suggesting that the previously reported episodic migrations of Antarctic killer whales to warmer waters associated with skin turnover may control the effects of potentially pathogenic bacteria such as Tenacibaculum dicentrarchi. Our work demonstrates the feasibility of microbiome studies from host shotgun sequencing data and highlights the importance of metagenomics in understanding the relationship between host and microbial ecology.


Subject(s)
Metagenomics , Microbiota/genetics , Skin/microbiology , Whale, Killer/microbiology , Animals , Antarctic Regions , Diatoms/genetics , Geography , Whale, Killer/parasitology
14.
Respirology ; 23(2): 220-227, 2018 02.
Article in English | MEDLINE | ID: mdl-28913912

ABSTRACT

BACKGROUND AND OBJECTIVE: Respiratory syncytial virus (RSV) is the most significant cause of acute respiratory infection (ARI) in early life. RSV and other respiratory viruses are known to stimulate substantial outgrowth of potentially pathogenic bacteria in the upper airways of young children. However, the clinical significance of interactions between viruses and bacteria is currently unclear. The present study aimed to clarify the effect of viral and bacterial co-detections on disease severity during paediatric ARI. METHODS: Nasopharyngeal aspirates from children under 2 years of age presenting with ARI to the emergency department were screened by quantitative PCR for 17 respiratory viruses and the bacterial pathogens Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis. Associations between pathogen detection and clinical measures of disease severity were investigated. RESULTS: RSV was the most common virus detected, present in 29 of 58 samples from children with ARI (50%). Detection of S. pneumoniae was significantly more frequent during RSV infections compared to other respiratory viruses (adjusted effect size: 1.8, P: 0.03), and co-detection of both pathogens was associated with higher clinical disease severity scores (adjusted effect size: 1.2, P: 0.03). CONCLUSION: Co-detection of RSV and S. pneumoniae in the nasopharynx was associated with more severe ARI, suggesting that S. pneumoniae colonization plays a pathogenic role in young children.


Subject(s)
Coinfection/diagnosis , Coinfection/microbiology , Nasopharynx/microbiology , Respiratory Syncytial Virus Infections/microbiology , Respiratory Tract Infections/microbiology , Streptococcus pneumoniae/isolation & purification , Female , Haemophilus influenzae/isolation & purification , Humans , Infant , Infant, Newborn , Male , Moraxella catarrhalis/isolation & purification , Respiratory Syncytial Viruses/isolation & purification
15.
FEMS Microbiol Lett ; 362(10)2015 May.
Article in English | MEDLINE | ID: mdl-25877546

ABSTRACT

Acute respiratory infection (ARI) is an important cause of morbidity in children. Mixed aetiology is frequent, with pathogenic viruses and bacteria co-detected in respiratory secretions. However, the clinical significance of these viral/bacterial co-infections has long been a controversial topic. While severe bacterial pneumonia following influenza infection has been well described, associations are less clear among infections caused by viruses that are more common in young children, such as respiratory syncytial virus. Although assessing the overall contribution of bacteria to disease severity is complicated by the presence of many confounding factors in clinical studies, understanding the role of viral/bacterial co-infections in defining the outcome of paediatric ARI will potentially reveal novel treatment and prevention strategies, improving patient outcomes. This review summarizes current evidence for the clinical significance of respiratory viral/bacterial co-infections in young children, discusses possible mechanisms of cooperative interaction between these pathogens and highlights areas that require further investigation.


Subject(s)
Bacterial Infections/complications , Coinfection , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Virus Diseases/complications , Asthma/etiology , Bacterial Infections/immunology , Child , Child, Preschool , Coinfection/immunology , Coinfection/microbiology , Coinfection/virology , Humans , Immunity, Innate , Male , Nasopharynx/microbiology , Respiratory Tract Infections/immunology , Virus Diseases/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...